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INTRODUCTION 

 
The ability to better characterize and quantify safety 

margins is important to improved decision making about 
nuclear power plant design, operation, and plant life 
extension. As research and development (R&D) in the 
light-water reactor (LWR) Sustainability (LWRS) 
Program and other collaborative efforts yield new data, 
sensors, and improved scientific understanding of 
physical processes that govern the aging and degradation 
of plant SSCs needs and opportunities to better optimize 
plant safety and performance will become known. 

The purpose of the Risk Informed Safety Margin 
Characterization (RISMC) Pathway R&D is to support 
plant decisions for risk-informed margin management 
with the aim to improve economics, reliability, and 
sustain safety of current NPPs. In this paper, we describe 
the RISMC analysis process illustrating how mechanistic 
and probabilistic approaches are combined in order to 
estimate a safety margin.  We use the scenario of a 
“station blackout” wherein offsite power and onsite power 
is lost, thereby causing a challenge to plant safety 
systems.  We describe the RISMC approach, illustrate the 
station blackout modeling, and contrast this with 
traditional risk analysis modeling for this type of accident 
scenario.  

 
THE RISMC APPROACH TO MODELING 
 

In the RISMC approach, what we want to understand 
is not just the frequency of an event like core damage 
from station blackout, but how close are we (or not) to 
this event and how might we increase our safety margin.  
In general terms, a “margin” is usually characterized in 
one of two ways: 

• A deterministic margin, typically defined by 
the ratio (or, alternatively, the difference) of a 
capacity (i.e., strength) over the load.  

• A probabilistic margin, defined by the 
probability that the load exceeds the capacity.  

A probabilistic safety margin is a numerical value 
quantifying the probability that a safety metric (e.g., for 
an important process observable such as clad temperature) 
will be exceeded under accident scenario conditions. 

The RISMC Pathway uses the probabilistic margin 
approach to quantify impacts to reliability and safety.  

 
PROBABILISTIC MARGIN ILLUSTRATION 
 

As an example of the type of results that are 
generated via the RISMC method and tools, we show a 
simple hypothetical example in Figure 1. For this 
example, we suppose that a nuclear power plant has two 
alternatives to consider: 

• Alternative #1 – retain an existing, but aging, 
component as-is 

• Alternative #2 – replace the aging component 
with a new one 

We run 30 simulations where this component plays a 
role in plant response under accident conditions (in “real” 
cases many simulations would be calculated, later we 
show a station blackout plot using 4000 runs). For each of 
the 30 simulations, we calculate the outcome of a safety 
metric –peak-clad temperature – and compare that against 
a capacity limit (assumed to be 2200°F). However, we 
have to run these simulations for both alternative cases 
(resulting in a total of 60 simulations).  This illustration 
provides an example of how probabilistic and mechanistic 
calculations are combined – the scenario is described 
probabilistically (e.g., we will not know a priori which 
components might fail during a scenario) and for the 
resulting scenario, the details (e.g., what has failed at 
what time) determines the boundary conditions for 
mechanistic calculations such as the thermal-hydraulic 
response of the plant during the scenario. 

The results of these simulations (shown in Fig. 1) are 
then used to determine the probabilistic margin: 

• Alternative #1: Pr(Load exceeds Capacity) = 
0.17 

• Alternative #2: Pr(Load exceeds Capacity) = 
0.033 (note lower values are better) 

In this example, the “load” is the blue and red boxes 
shown in Figure 1 (measured by the peak clad 
temperature for each simulated scenario) and the 
“capacity” is the 2200°F 10 CFR50.46 limit. 

If the safety margin characterization were the only 
decision factor, then Alternative #2 would be preferred 
since its safety characteristics are better. Note though that 
the safety margin insights are only part of the decision 
information that would be available to the decision maker, 
for example the costs and schedules related to the 
alternatives would also need to be considered. 



 
Fig. 1. Illustration of a probabilistic safety margin 
calculation. 
 

The mechanics to conduct margins analysis follows 
the RISMC-specific steps [1]: 

1. Characterize the issue to be resolved and the 
safety figures-of-merit to be analyzed to 
explicitly scope the modeling and analysis. 

2. Describe the decision-maker and analyst’s state-
of-knowledge (uncertainty) of the key variables 
and models relevant to the issue. For example, if 
long-term operation is a facet of the analysis, 
then potential aging mechanisms that may 
degrade components should be included in the 
quantification. 

3. Determine issue-specific, risk-based scenarios 
and accident timelines.  Note that a scenario is 
just a low-level model (e.g., a component) with 
active properties engaged with a larger model 
(e.g., the plant, including thermal-hydraulics).  In 
this paper, we describe scenarios related to 
station blackout. 

4. Represent plant operation probabilistically using 
the scenarios identified in Step 3. For example, 
plant operational rules (e.g., operator procedures) 
are used to provide realism. Because numerous 
scenarios will be generated, the plant and 
operator behavior cannot be manually created 
like in current risk assessment using event- and 
fault-trees. In addition to the expected operator 
behavior, the probabilistic plant representation 
will account for the possibility of failures. 

5. Represent plant physics mechanistically. The 
plant systems-level code(s) is used to develop 
distributions for the key plant process variables 
(i.e., loads) and the capacity to withstand those 

loads for the scenarios 
identified in Step 4. Because 
there is a coupling between 
Steps 4 and 5, they each can 
impact the other.  

6. Using the simulations from 
Steps 3-5, construct and 
quantify probabilistic load 
and capacity distributions 
relating to the safety figures-
of-merit analyzed to 
determine the probabilistic 
safety margin. 

7. Determine how to manage 
uncharacterized risk. Because 
there is no way to guarantee 
that all scenarios, hazards, 
failures, or physics are 
addressed, the decision maker 

should be aware of limitations in the analysis and 
adhere to protocols of “good engineering 
practices” to augment the analysis. 

8. Using risk management strategies, identify and 
characterize controls that determine safety 
margin in order to propose margin management 
strategies. Determine whether additional work to 
reduce uncertainty would be worthwhile or if 
additional (or relaxed) safety control is justified. 

 
STATION BLACKOUT SIMULATION 
 

In order to represent the nuclear plant behavior for 
station blackout scenarios, we focus the analysis within 
three general areas: 
 

• Models – A representation of key systems, 
structures, and components (SSCs) is defined for 
a particular facility.  We will be able to simulate 
with these models – by understanding how each 
SSC interacts with other parts of the facility 
(e.g., failure dependencies) – the hazard-induced 
susceptibilities of each SSC, and how to dial up 
model fidelity/resolution when needed. 

• Phenomena – An approach to represent hazards 
and their effect on physical behavior at the plant 
is required.  In some cases, multiple models of a 
specific phenomenon may be available, but this 
ensemble of models will need to be intelligently 
managed. 

• Integration – Any risk-informed decision support 
approach will rely on a variety of probabilistic 
and mechanistic information.  The safety-drivers 
will need to be integrated in order to determine 
the effectiveness of proposed mitigation 
strategies. 

 



The scenario representation can interact or receive 
information from a mechanistic (e.g., physics engine) 
simulation.   Through this capability, we can know the 
occurrence of various events in the simulation.  This is 
done through “controls” placed in the model.  For 
example, a trigger can be placed on a pipe related to an 
aging model so if a crack is seen (at some future time) 
that trigger is activated (and possibly many components 
can be failed due to the leaking fluid).  The RISMC tool 
that performs the scenario representation is called 
RAVEN – additional detail on this tool is found in [2]. 

By running the simulation with these time dependent 
interactions, an analyst could see not only what affects a 
scenario has on the plant, but the relative time relationship 
between the events.  These timing relationships may also 
affect other plant physics such as thermal-hydraulics in 
cooling systems, especially in complex situations such as 
those found in station blackout scenarios which range 
from minutes to days.  Further, these timing relationships 
can be used to adjust performance shaping factors that are 
used to determine operator human error probabilities. For 
example, the human reliability model known as SPAR-H 
[3] can be integrated directly into the scenario generation 
in order to describe the success or failure of operator 
diagnosis and actions. 

To simulate a station blackout scenario, we describe 
both the plant cooling functions (such as the primary 
cooling systems, as illustrated in Fig. 2) and supporting 
systems such as electrical power (including backup power 
sources such as the emergency diesel generators).  
Included in our station blackout model are factors such as: 

 
• Failure probabilities and rates for key 

components. 
• The power distribution network (e.g., lines and 

busses) in order to represent dependencies of 
support systems on the electrical system. 

• Recovery actions performed by operators such as 
restoring offsite power or recovery of a failed 
diesel generator. 

• Pump coast-down times (when power is lost). 
• Thermal-hydraulics representing both coolant 

flow pressures and temperatures and clad 
temperatures. 

• Capacity of the fuel to resist failure under high 
temperature conditions. 

• Uncertainties on the many of the factors 
identified above. 

 
Contrast with traditional station blackout modeling 
 

While the static event-tree/fault-tree (ET/FT) 
approach has been used in the reliability modeling of 
systems for many years, numerous concerns have been 
raised about the capability of the ET/FT approach to 

 
  

Fig. 2.  Representation of cooling loops in the RAVEN 
tool. 
 
handle dynamic and physical-based systems on a stand-
alone basis.  The ET/FT methodology does not treat the 
time-dependent interactions between physical processes 
and triggered or stochastic logical events as an accident 
evolves which may lead to coupling between these events 
through the control system. Even if these dynamic 
interactions are semi-quantitatively modeled through a 
classification of changes in process variables (e.g. 
"small", "moderate", "large), it may lead to the omission 
of some failure mechanisms due to inconsistencies in the 
definition of the allowed ranges for the process variables. 

In order to attempt to represent scenarios that are 
dynamic or involve mechanistic interactions, a variety of 
approximations have been used in static risk assessment 
models.  We describe a few such approaches in this 
section, and for each, present why simulation using a 
coupled probabilistic and mechanistic approach provides 
a better analysis method. 

One complication that occurs in cut set-based 
modeling is the treatment of what are called mutually-
exclusive events.  These are situations where two events 
that can be produced by the static fault tree model are, in 
reality, not possible are or not allowed.  Current practice 
is to manually construct rules to post-process the results, 
thereby removing the suspect combinations.  For 
example, a rule to remove an auxiliary feedwater pump 
(in test and maintenance) and a diesel generator (in test 
and maintenance) would look like: 
 
if (AFW-TDP-TM * EPS-DGN-TM) then 
   DeleteRoot; 
Endif 
 

In the simulation approach, instead of manually post-
processing results, the plant rules (e.g., technical 
specifications) would be built into the model.  Thus, the 
analysis would never create the combination and, 
consequently, would not require any additional attention. 
 



An issue that complicates traditional cut set-based 
approaches is for the case where time-dependent failures 
or recoveries are found within a single cut set.  For 
example, consider a typical cut set from the station 
blackout event tree: 
 
IE-LOOP*DGN-FTS-A*DGN-FTR-B*OSP-NONREC 
 

Let us focus just on the time-dependent portion of the 
cut set, namely:  EPS-DGN-FTR-B * OSP-NONREC.  
Traditionally, cut set-based software would simply 
multiply the probabilities together for the two basic events 
above.  However, this approach overlooks the time-
dependent nature of the EDG failure, because the failure 
could have occurred any time between time zero and the 
end of the mission time (say eight hours).  And the cut set 
describes failure as offsite power not being recovered by 
the time of EDG failure.  Thus, not considering the time 
dependence can lead to erroneous answers. Consequently, 
some cut set models apply “fudge factors” called 
convolution values in order to approximate an exact 
answer. 

The simulation approach we use to represent the 
station blackout models the time interactions directly, and 
as a consequence, no additional “fudge factors” are 
required in order to obtain correct estimates of 
probabilities. 

Lastly, in order to mimic the dynamic time behavior, 
static risk models are frequency subdivided into artificial 
time segments.  For example, a failure rate for a pump 
may be broken into a 1 hour mission time (for early 
failures) then a 23 hour mission time (to represent later 
failures).  Not only does this greatly complicate the model 
(each part of the model is copied multiple times, thereby 
making it harder to understand and maintain), but is only 
an approximation.  The simulation approach represents 
these types of dynamic situations directly. 
 
CONCLUSIONS 
 

The RISMC Pathway provides a systematic approach 
to the characterization of safety margins, leading to the 
support of margins management options (those proposed 
alternatives that work to control margin changes due to 
aging or plant modifications). As such, it provides a vital 
input to the owner and regulator to support decision 
making for NPP operations now and for extended 
lifetimes. 

RISMC uses a probability-margin approach to 
quantify impacts in order to avoid conservatisms (where 
possible) and to treat uncertainties directly.  An example 
of the types of results that are calculated for a station 
blackout analysis is shown in Fig. 3, where we calculate 
both a load (the blue area) and a fuel capacity (the red 
area).  This margin approach uses a blended approach of 
probabilistic and mechanistic calculations. 

 
Fig. 3.  Example of the load capacity margin results. 
 

Once we complete the RISMC methods and toolkit, a 
link to a risk model would exist – consequently we could 
have an interactive risk tool and advanced training device.  
This interaction could be extended to allow the user to 
affect the risk model – for example one could “enter” the 
plant model and select components to modify – then they 
could see the safety changes and understand the safety 
margin magnitude.  This would enable anyone familiar 
with the physical version of the nuclear power plant to see 
the ramifications of their proposed modifications. 

The details that are produced from simulation 
approaches have been criticized due to the analysis 
computational burden and the resulting volume of 
information that can be produced.  While not readily 
apparent, we should view these criticisms as potentials for 
enhancing accuracy and timeliness.  For example, the 
scenario detail that is obtained as part of simulation 
analysis may be (if we ask in the right way) viewed as 
providing information not just on failures (the typical 
question) but on degradations, operability issues, 
maintenance issues, and human performance.  Further, 
these simulation information streams may be mined for 
positive aspects of performance (what works and why) 
since the bulk of these simulated realities will not result in 
undesired outcomes – the “insights” are in the details. 
 
REFERENCES  
 
1.  C. SMITH, C. RABITI, R. MARTINEAU, “Risk 
Informed Safety Margins Characterization (RISMC) 
Pathway Technical Program Plan,” INL/EXT-11-22977 
(2012). 
2.  C. RABITI, A. ALFONSI, D. MANDELLI, J.  
COGLIATI; R. MARTINEAU; C. SMITH, “Deployment 
and Overview of RAVEN capabilities for a Probabilistic 
Risk Assessment Demo for a PWR Station Blackout,” 
INL/EXT-13-29510, (2013). 
3.  D. GERTMAN, H. BLACKMAN, J. MARBLE, J. 
BYERS, C. SMITH, “The SPAR-H Human Reliability 
Analysis Method,” NUREG/CR-6883, (2005). 


